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An approximate partial differential matrix equation in the 
lepton energy for evaluation of Dirac-Coulomb radial integrals 

D W Kosik 
Department of Physics and Astronomy, Butler University, Indianapolis, I N  46208, USA 

Received 3 October 1990 

Abstract. Radial integrals consisting of products of Whittaker functions of the first and 
second kind arise frequently in expressions for various scattering processes. In particular, 
the Dirac-Coulomb radial integrals for intermediate energy DWBA lepton pair production 
and bremsstrahlung consist of products of Whittaker functions that result in slowly converg- 
ing series expressions. An approximate partial differential matrix equation in the lepton 
energy is obtained that can be used to numerically propagate Dirac-Coulomb radial 
integrals along the lepton and photon energy spectrum, resulting in substantial time sa\..tgs 
on the computer. Radial integrals for DWBA electron pair production from IO MeV photons 
are calculated as an example of the use of the approximate equation that yield three 
significant digit accuracy. 

1. Introduction 

Many radial matrix elements that occur in the formulation of a scattering process 
involve integrals over products of Whittaker functions of the first and second kind. 
Whittaker functions (Whittaker and Watson 1927) are closely related to numerous 
other functions of special interest in scattering processes, e.g. Bessel functions, Coulomb 
functions and Dirac-Coulomb functions. Integrals over products of related functions 
can therefore be re-expressed into integrals involving products of Whittaker functions. 
Often, the evaluation of these radial integrals in terms of their infinite series expansions 
was not possible due to the series being barely convergent o r  not convergent at all for 
the momentum variables of the problem. 

In recent years, radial integrals over Whittaker functions have been expressed in 
terms of matrix gamma functions (Onley 1972, Sud el a/ 1976). The matrix gamma 
function is a generalization of the gamma function consisting of an integral over 
products of solutions to a first-order differential matrix equation. The matrix gamma 
function obeys a recurrence relation and a partial differential matrix equation (Wright 
et a/ 1977) which can be used to reduce the number of direct evaluations of radial 
matrix elements. This yields a substantial saving on computation time for matrix 
elements of scattering processes involving large angular momentum components in  
the incident and outgoing waves. 

The difficulties of convergence in the evaluation of radial integrals in the form of 
the matrix gamma function have been handled for the case of DWBA electron pair 
production and bremsstrahlung processes at intermediate energies (Kosik 1980, Wright 
et a/ 1987) by an analytic continuation of the matrix gamma function consisting of 
direct evaluation in a convergent domain followed by numerical integration ofa  partial 
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differential matrix equation back to the domain of interest. A more general expression 
for the matrix gamma function in terms of convergent matrix series was given by 
Wright and Talwar (1986). 

Calculation of pair production or bremsstrahlung processes at intermediate energies 
can now be done without numerical difficulties; however, even with the use of matrix 
recursion relations, an enormous amount of computer time is still required to calculate 
matrix elements. For example, the total cross-section for electron pair production has 
oniy been caicuiaied in the intermediate energy range (io-% ?vie\.') ai i0 and 20 ivie'v'. 
In order to save substantial amounts of computation time, approximate partial differen- 
tial matrix equations have been derived in the photon energy and lepton energy for 
pair production and bremsstrahlung processes (Sud et al 1979, Sud and Sharma 1984). 
Unfortunately, these approximations are quite restrictive and rather poor when used 
in a direct manner. 

equation in the lepton energy for the matrix gamma function consisting of Whittaker 
functions corresponding to Dirac-Coulomb radial integrals. In section 3 I will discuss 
a technique for avoiding round-off difficulties associated with direct numerical integra- 
tion of the partial differential matrix equation in the lepton energy. In section 4 I apply 
these results to the evaluation of Dirac-Coulomb radial integrals that arise in electron 
pair prodaction of izterrnediete energy photons in the presence of a point Cou!on..b 
field of the atomic nucleus. 

seic,oii 2 1 w,:: aii iiiiiiiOve~ appio*iiiiaie pa*,a! (j$feieiicia: iiiaiiix 

2. Approximate partial differential matrix equation in the lepton energy for the matrix 
gamma function 

Whittaker functions arise in the general solution to the differential matrix equation 

d U  A 
-= ( ; - E )  U 
d x  

where A, E, and U are 2 x 2 matrices. For example, a solution to equation (1) involving 
Whittaker functions of the first kind with a diagonal B matrix has 

- ( k + f )  p + ~ + f  
A = (  p - x - 4  K + $  

and a solution matrix U;.,. given as 

It is possible and very useful to transform the solution U to equation (1) into a 
representation where either the matrix A or B is diagonal. The matrices of a given 
representation are labelled with the appropriate superscript, e.g. U'"'. 

The solution to the Dirac equation for a point Coulomb potential can be separated 
:adid and xng..!ar fgnctinns (R.ose !St;!!. The radia! Dirac-Coulomb functions 

for a given lepton energy E and mass m are also solutions to an equation of the form 
of (1) given as 
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where 

with a solution matrix given as 

Here the K is the Dirac quantum number which gives the orbital I and total j angular 
momentum of the lepton as I =  / K  +$I -f and j = I K I  -4, a is the fine-structure constant, 
Z is the atomic number of the nucleus, and g , ( r )  andf,(r) are the Dirac-Coulomb 
radial functions (R, regular; I, irregular). The superscript notation (S) is used to 
indicate that the matrices are in the so-called standard representation of the Dirac- 

functions 
are expressed in terms of Whittaker functions of the first kind and therefore can be 
given as power series expansions. 

The normalized solution U;'), its transformations to other representations, and the 
transformation matrices are given by Sud et al(1976). In the B-diagonal representation, 
they obtain the transformed solution 

Cou!omh radial functionsl n . e  sgbscip! 0 is used to indicate !h.! !he 

1 /1" i,:"") - r i m .  ~ :-\ i i . .  I : - \I  a" /-:"-!\ 

Ipr M1~2-i,,,(2ipr) M1/2-i.,-l(2i~r) 
(7)  1 '..-1/2-ln,l\-.Y'I L \  I .'I,/ \ I ' I I J ' " - 1 / 2 ~ i ? . ~ 1 \ L . Y ' ,  U""'=Jz;-( 

2 2 1 r 2  where Y = ( K ' - ~  2 )  , q=LyZE/p and the lepton momentum is p=(E2-m2)'12. 
The matrix function Ub"' is a solution to equation (4) in the B-diagonal representation 
with A'" and matrices given as 

Note that Ub"' is a solution to equation (1) for Whittaker functions of the first kind 
and can be written as in equation (3) by identifying the parameters as K = -;-in and 
p = y and the variable as x = 2ipr. Equation (7) can now be seen to be a solution to 
equation (4) in the B-diagonal representation provided that the momentum p is 
cc~side:ed fixed o: cozs!az! azd caz be p~!!ed o:! of the de:i:.a:iue in equatio:: ( I ) .  

The radial integrals for point Coulomb scattering processes will contain products 
of Dirac-Coulomb functions and other functions that are solutions to the type of 
first-order differential matrix equation given in equation (4) that correspond to different 
momentum variables so that all radial integrals of interest can be formed by integrating 
the matrix function 

(9) ..,, ., I ^ .  - r I  1-1 \ - r. ,-. w ( r j =  u , { L i p , , r ) @ .  . .v u 2 ( L i p 2 r j w  u l i L i p , r )  

where pr is the momentum variable for each function, Ut are 2 x 2 matrix functions 
that satisfy equations of the form of equation (4) and W ( r )  is an n x n matrix function. 
Onley (1972) and Sud et a/ (1976) showed that W ( r )  is a solution to the first-order 
matrix differential equation 

( iu j  

where d and 9 are n x n matrices given as 
d = A, 0 12n-2 + i20 A.-, 0 12n-4 + . . . + 12n--2 0 A I 
3 = B.0 I,,-, +. . . + 1 2 n - 2 0  B, (11) 
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and I. is an n x n unit matrix. Since the matrices U, depend upon the Whittaker 
parameters K and w and the momentum variables, W( r) dependence on these variables 
can be expressed through the matrices in equation (11 ) :  

W = W(.d, 9; r). (12) 

W ( d , 9 ;  r ) =  W ( d + a , % + b ; r )  (13) 
where the notation d+ a means dt al,. From the same references given above, the 
matrix gamma function was defined as 

An important property of this solution to equation (IO) is 
e-br 

where the symbol (0 )  indicates that any simple pole present at the origin has been 
subtracted out. Contained within the elements of the matrix gamma function are the 
radial integrals of importance to the scattering problem. The matrix gamma function 
obeys a recurrence relation that is similar to that for the ordinary gamma function: 

dr(sa,9)=ar(d+i,s). (15) 

Now consider all momentum variables as fixed except for pi. Taking the partial 
derivative of the matrix gamma function in the B-diagonal representation, we obtain 

The derivative acting on U!’’ within the integral can be expressed as 

duiB’ J U ! ” ’ ( X )  -+L- ax au(” ayt 

api dx dpi ayi Jpi 
~- - 

where x = 2ipjr and yi = -iv;. The second term occurs when parameters in UiE’ depend 
upon vi which in turn depends upon the momentum pi. When this occurs, U!.”’ is 
considered to be a function of x and the parameter y , .  This is the case for the 
Dirac-Coulomb functions. Substituting equation (1) into the first term of equation 
(17) yields 

The second term in equation (17) can be evaluated for the Dirac-Coulomb radial 
functions by first considering the derivative of one of the Whittaker functions that 
make up the matrix U!.”. The Whittaker function M.,,(x) can be expressed in terms 
of the confluent hypergeometric series , F ,  as (Slater 1960) 

(19) 

where the confluent hypergeometric function has an integral representation given as 

x / 2  &L+1/2 F (  - K + l  2 +1;x)  M,.,=e- x I I P 2 ,  w 

provided that 

.9 t (  c) > W( a )  > 0 
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Taking the derivative of equation (19) with respect to the parameter K gives 

The derivative of the confluent hypergeometric function becomes 

From the definition of the digamma function $ ( z )  (Erdelyi et a1 1953) the derivative 
of the gamma function is given as 

I (K, p;  x )  = 
exl [ * -x - l / *  (1 - t ) '+"- ' /2  d[ (25)  Jo' 

ne derivative of the integral I in equation (24) can be evaluated by expanding the 
exponential in the integral in a power series and taking the derivative of the result 
term by term, giving 

X" as(@+ n - K +t, + K ++) 
= E >  n. JK 

where S(x, y )  is a beta function. Since the beta function can be expressed as 

then using this and equation (23) in equation (26) yieids the resuit 

J I  
-= [ $ ( C ( + K  +f)-$"(IL-K f t )11 (% P ;  X) 
aK 

(See the appendix for the details leading to the result in equation (28).) Substituting 
this into equation (24) gives 

(29) a IFl ( p  - K +f ) ,x"  ( c _ = -  
JK "_, ( 2 p + 1 ) , n !  m = O  ( p + m  - ~ + t )  
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where ( 2 ) .  = l?(z+n)/T(z) is a Pochhammer symbol. The result given in equation (29) 
could now be used to find an expression for the second term in equation (17) that is 
open ended but would require an enormous amount of numerical effort to evaluate 
directly. What is needed is an approximate expression that will lead to a simple 
first-order differential matrix equation for the matrix gamma function that can be 
rapidly evaluated on the computer. To this end, consider making the approximation 
of replacing the sum in parenthesis in equation (29) by the overestimate given as 

n 

Substituting this approximation into equation (29) yields 

f ( p - K  + f ) ( p - ~  +$+ l ) ln - l lx"  
,,=I (2p+ 1) (2p+  1 + l)(n-,l(fl - l ) ! ( p - ~ + i )  JK 

where a further approximation was made in neglecting the 1's in the Pochhammer 
symbols. Since the Whittaker functions that occur in the B-diagonal representation 
have parameters given as 

K --1+ 2 Y  PL=Y (33) 
Y w ; 1 1  nnt rhnnne - T a c h  :n thn :-+-An* .enin- nf t h m  e r r n m ~ r  ~nnrtn.- wha-e F 3, m C A  
R I.L.. L l Y L  "..Y'LBC 1.. "I.1 111 L1.C . I I I C L . V L  .be,.,,. v1 L L l r  C l ' l L 6 J  " y u ' L L Y . l l  W l . * L . .  I ,, 111  1Y 

that to a good approximation in this region K = -f-imZ( 1 + m2/2p2). Therefore, most 
y values will exceed K values in magnitude with a resulting improvement in the 
approximations made in equation (32) as y becomes large. 

Although the approximation in equation (30) is rather harsh for large n, it is 
workable because the dominant contributions to the radial integrals will require a 

occurs. This can be seen to be true by examining the ratio % of a term at n + 1 over 
a term at n in equation (29): 

smil!! ""mber E nfterms in eq.I!ion (29) !O r e d !  I point ?.ihere the rinse! nfmnvergence 

( U  + f l  - K + i ) X  = 
( 2 p +  1 + n ) ( n +  1) 

(34j 

Desiring for convergence, 131 < 1, and noting that dominant contributions occur when 
lxl-I2prI-~2/1-~2Kl, then n-+~l. 

Substituting equation (32) into equation (21) gives 

Using equations (7) ,  (33) and (35), the second term of equation (17) becomes 
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where 

D =  (2Yl(;-Y2) 0) 
0 

(37) 

and Vl”’ is the same as U!”’ with the first column of functions set to zero. 
Now consider the case where the parameters of U!”’ are independent of the 

momentum variable pi. The second term in equation (17) will then be zero. Substituting 
equations (18) and (17) into equation (16) yields the differential matrix equation 

Using equations (13) and (15), equation (38) becomes 

or 

-- - X P )  (independent parameter) (40) 

where T, is the matrix given in the square brackets of equation (40). This is the result 
obtained by Wright et a/ (1977) and is essentially the same type of approximate partial 
differential matrix equation used by Sud and Sharma (1984) in their calculation of 
electron pair production in the tip region of the energy spectrum where the parameter 
y that arises in the radial Dirac-Coulomb functions is approximately constant. 

For the case where the matrix solution U!” contain Whittaker functions of the 
first kind corresponding to radial Dirac-Coulomb functions, the parameters of U!’’ 
will be dependent upon the momentum variable pl. Simple first-order partial differential 
matrix equations can be obtained for each column of the gamma matrix function. 
These equations are of two types depending upon whether the derivative with respect 
to the parameters acts on the first or second column of U / B ’ .  For the first column of 
U!B’,  substitution of equations (36), (18) and (17) into equation (16) will yield the 
same right-hand side as in equation (40) for the first term and using equations (13 )  
and (15) for the second term gives 

JT‘B’ 

ap. 

(dependent parameter) (41) _- ar‘,”’-(r+ R,)r jB)  
apt 

where the matrix R, is given by 

The matrix gamma function Ti”’ is an n-element column vector of T“’ formed from 
the first column of U!”’. Likewise to the above, the second column of U!.”’ yields the 
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result 

JT!” - = ( T . + s j ) p  (dependent parameter) 
api 

where the matrix S, is given by 

(43) 

An improved approximate first-order partial differential matrix equation in the lepton 
energy is obtained by taking the derivative of rjB1 with respect to the lepton energy 
E! as 

where j = 1, 2 and i = 1,. . . , n with the additional partial derivatives in the above 
equation present to allow for the possible dependence of momentum variables on the 
energy E,, as  for instance would be required by conservation of energy in a scattering 
process. Use of equation (45) along with equations (40), (41) and (43) enable rapid 
numerical integration of the vector gamma function from some initial lepton energy 
to a range of other adjacent lepton energies for the radial Dirac-Coulomb functions. 

3. Numerical integration of the vector gamma function 

The n x n 94 matrix in E-diagonal representation consists of elements that span all 
combinations of signs between the individual elements of each E!.”. Since the radial 
integrals for the scattering problem will contain products of matrix functions corre- 
sponding to different momentum U{”’(2ipir) that are solutions to equations of the 
form of equation (4), then we will find BIB’ of the form of equation (8). Hence, 9 
will contain elements like (+ip. f.. .k ip j* .  . .k ip , ) .  The numerical evaluation of 
equation (45) requires the formation of 3 - l  and therefore the inversion of the elements 
in 9. At intermediate and higher lepton energies E * p and because of energy conserva- 
tion in the scattering process, one of the elements of BR-’ will be nearly singular. This 
causes significant loss of precision in the numerical integration of the vector gamma 
function in equation (45). 

To alleviate this numerical difficulty, consider as a first step numerically integrating 
equation (45) for a momentum variable p that has independent parameters and where 
all other momentum variables are fixed. Equation (45) along with equation (40) give 
for this case the exact expression 

Having obtained the vector gamma function at a non-physical value of the energy E’, 
the near singularity in the inverse matrix 3 - l  is removed. The second step is to now 
numerically integrate equation (45) for the energy variable of interest, maintaining 
conservation of energy and the energy difference SE = E’- E. After the desired vector 
gamma function at E”= SE + E”’ is calculated, the third step is to use equation (46) 
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in reverse to numerically integrate the vector gamma function back to the physical E“’ 
requiredby energy conservation. The diagram below illustrates this three-step procedure 
for numerical precision: 

U E ,  4 ,))  - r ( E ’ , E , , ) )  

U 1 
rifi,,, F \ ric“ c 1 

\- 9 ”( , ) I  I \h , ,-((I)/ 
where E,,)  represents the set of all energy variables that r depends upon except E. 
Although the near singularity occurs in the first and last steps of the above procedure, 
it only exists over a few of the numerical integration steps and therefore does not 
cause a significant loss in precision. 

4. Evaluation of Dirac-Coulomb radial integrals for electron pair production 

As an example application of the approximate partial differential matrix equation in 
the lepton energy for the matrix gamma function, consider the vector gamma function 
that contains as elements the radial integrals needed for calculation of DWBA matrix 
elements in electron pair production (Wright et al 1987). This vector gamma function 
consists of the integrand 

(47) W(&W , gew. , r) = u?’(ip3r)@ u:”(ip2r)@ U\”(ip,r) 

where U‘,’’ and U$‘’ are column vectors of regular Dirac-Coulomb functions given as 

with (j= 1,2) and U?’ is a column vector of spherical Bessel functions given as 

with L the angular momentum quantum number of the incoming photon. The radial 
functions in U$’) are from the radial part of the outgoing electron wavefunction with 
energy E2 and momentum p2. The outgoing positron radial functions in U\’’ are 
obtained from U;’) by replacing the energy variables for the electron wavefunctions 
with E2- -E, and the momentum variables with p2 + -p, .  The energy of the incoming 
photon is E,= w with a momentum p3=o.&. In the standard representation, the 
matrices A”’ and E‘” of equation (4) for the electrons are as given in equation ( 5 )  
with the appropriate replacements for the energy and momentum variables mentioned 
above. For the spherical Bessel functions of U$”’, the matrices are given as 

Using the transformation equations U:’’= C?’U!’’, equation (47) can be expressed as 

w(&”’, a”’; r)=(CseOCsBOCs’)W(&‘B’, 3“’. , I). (51) 
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The transformation matrices C?” are given as (Sud et a/  1976) 

1 /-i i \  
CY=, \  ,) ( 5 2 )  

where p = aZm/p  and Cs” is obtained from C;” by replacing the electron variables 
with positron variables as discussed above for U:”’. From equation (14), equation (51) 
gives for the vector gamma function of pair production 

rlS)= (cSflo c;”o c:”)rp. (53) 
The normalized transformed matrices which make up the integrand of ri6j are given 
as 

In order to numerically propagate the vector gamma function for pair production 
across the physical electron energy spectrum, the photon energy is considered fixed 
and the electron and positron energy is allowed to vary such that the total energy of 
the process is conserved, w = E, + Ea.  Equation (45) yields for this situation the result 

(59) 
ar:”) ar:”’ -+--1.-_- ap2 a P ” )  ap, - 
aE2 ap2 a ~ ,  apt a ~ ,  

and a similiat equation for the derivative with respect to E,. The derivatives of r\’) 
contain dependent parameters requiring the use of the approximate equation (41). 
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However, the vector gamma function for pair production contains the additional 
normalization factors with momentum dependence. The simplest procedure to follow 
is to remove the normalization factors before applying equation (59) and then restore 
them upon completion of the numerical propagation. In addition to removing and 
restoring the normalization factors, the procedure outlined in section 3 is followed to 
improve the numerical precision of the result. 

The inverse transformation from the standard to the B-diagonal representation of 
equation (53) is used on ris) calculated exactly at the energies w, E, and E,. For the 
first step, E, and E, are considered fixed and equation (46) is used to propagate ri’) 
to the non-physical value of the photon energy 0’. In the second step, w’ is fixed and 
E, and E,  are allowed to vary with w = E ,  + E,. Equation (59) is used to propagate 
r;”’ to its value at the desired final energies E ;  and E:. Finally, in the third step, E ;  
and E ;  are fixed and equation (46) is used in reverse to propagate ry”’ to the physical 
value r:‘”’ at energies w, E ; ,  and E ;  and is then transformed back to ryes'. 

The tables show a comparison of the results of this procedure (approximate) to the 
results obtained exactly (exact), with Rj = 0 (fixed parameter), and with w = w’  and 
Ri = O  (nearly singular) for the first element of r!” which is the radial integral 

Table 1 shows the results of propagation away from the middle of the electron energy 
spectrum. About three significant digit or better agreement can be seen between the 
exact and approximate results. The good agreement that occurs when K~ - K~ is a result 
of the parameter terms in equation (59) giving nearly equal but opposite contributions 
tending to cancel out of the calculation. The poorer agreement that occurs when K, 
or K~ is small and the other K is large is due to the approximation becoming worse 
with small Y ( K )  and an asymmetry in the two parameter terms of equation (59). In 
all cases the approximate calculation leads to a notable improvement in the results. 

Table 1. Comparison of values of the radial integral R ,  calculated by exact, approximate, 
‘fixed parameter and nearly singular means for electron pair production in the presence of  
a uranium nudeus ( Z  =92).  The initial energies are w = 10 MeV, U ’ =  I3 MeV, E* = 5 MeV 
and E,=5 MeV. The final electron energies arc E;=5.5 MeV and E[=4 .5  MeV. All 
numbers in the table are to be multiplied by the factor 1 x lo-‘. 

* I  1 1 5 10 

K* I 10 6 1 
L I 10 6 10 
Exact -23.509 3 -3.281 95 -7.930 82 3.952 43 
Approximate -23.514 5 -3.277 86 -7.929 57 3.969 30 
Fixed parameter -23.492 0 -3.30291 -7.928 52 3.973 17 
Nearly singular -23.411 0 -3.319 14 -7.926 41 3.97649 

In table 2 the propagation is from the edge of the electron energy spectrum. Again, 
about three significant digit agreement can be seen. Note the dramatic agreement for 
the case where K~ - K ~ .  Because of the asymmetry in the electron energies, cancellation 
of the parameter terms in equation (59) is not the cause of the dramatic agreement, 
but instead must be a result of the larger values of Y ( K ) .  The non-physical photon 
energy w‘ is smaller here in order to reduce the round-off error associated with the 
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Table 2. Comparison of values of the radial integral R, calculated by exacr, approximate, 
fixed parameter and nearly singular means far electron pair production in the presence of 
a uranium nucleus (Z =92). The initial energies are o = IO MeV, w'= 11 MeV E>= 1 MeV 
and E, =9 MeV. The final electron energies are E :  = 1.5 MeV and E ;  = 8.5 MeV. All 
numbers in the table are to be multiplied by the factor I x IO-', 

*I 1 1 5 10 
K2 I IO 6 I 
L 1 IO 6 10 
Exact -382.712 4.938 14 -12.138 1 - 128. I I2 
Approximate -383.125 4.564 90 -12.687 9 -133.351 
Fixed parameter -388.464 4.438 15 -13.6662 - 119.208 
Nearly singular -396.637 4.55741 -15.081 0 -108.885 

number of steps in the numerical integration. As before, small values of K give poorer 
results and in every case the approximate result gives a notable improvement. 

For numerical propagation along the photon spectrum, one of the electron's energy 
is considered fixed (say in this case E,) and the other electron's energy (Ez)  and photon 
energy are allowed to vary such that the total energy of the process is conserved 
E, = w - E 2 .  Equation (45) yields in this case 

The numerical procedure is the same as before except that step two is a modified to 
have E, fixed and E, and w'  as the varying variables with E, = w - E2 and 0'- w kept 
constant with equation (61) used in the numerical propagation. 

Table 3 shows the result of propagation away from the middle of the electron 
energy spectrum. There is almost five significant digit agreement for the case where 
K ,  - K ~ .  even though the propagation has been carried out over a much larger range 
than in the previous examples. This improved agreement can be attributed to the 
decreasing contribution of the parameter term in equation (61) as the photon energy 
w and therefore the electron energy E2 increases. As before, the approximate results 
give the best overall agreement to the exact results. 

In conclusion, use of the approximate partial differential matrix equation derived 
in this paper can greatly reduce the time required to calculate radial integrals containing 

Table 3. Comparison of values of the radial integral R, calculated by exact, approximate, 
fixed parameter and nearly singular means for electron pair production in the presence of 
a uranium ~ U C ~ P U S  (2 = 92). The initial energies are w = IO MeV, w ' =  11 MeV, El = 5 MeV 
and E, = 5 MeV. The final energies are E: = 8 MeV and 0'" = 13 MeV. All numbers in the 
table are to be multiplied by the factor 1 x 

10 I 1 5 10 
K ,  1 10 6 I 
L 
Exact 

1 10 6 10 
-10.201 3 -3.483 87 -4.921 7 I 2.132 95 

Approximate -10.182 2 -3.481 86 -4.927 83 2.143 48 
Fixed parameter -10.176 1 -3.495 11 -4.923 63 2.14963 
Nearly singular -10.116 5 -3.511 12 -4.918 68 2.75842 
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Dirac-Coulomb functions and still yield a sufficiently useful number of significant 
digits in the result. For the examples given above, the time savings was a factor of 
approximatelyi-&of the time required for an exact calculation. With furtheradjustment 
of the parameters involved in the numerical integrations, some improvement in these 
results should be possible. 

Appendix 

The evaluation of the derivative of I ( r ,  p ;  x)  leading to equation (28) begins with 
substituting equation (27) into equation (26) ,  yielding 

Now using the recursion relation obeyed by the digamma function (Erdelyi et ai 1953) 
given as 

1 1  1 
z P + I  z t n - 1  

* ( z +  n )  =-+-+. . .+- + * ( P I  for n = 1,2 ,3 , .  . . (A21 

where the upper limit (n - 1) is understood to mean that no terms exist when it is 
negative. Factoring out the $ term yields 

d l  

a K  
- = [ * ( p + K f t ) - ~ ( F - K + f ) ] l  

which is the result given in equation (28). 
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